
www.manaraa.com

Dynamic Data Structures for Fat Objects

and Their Applications

�

September 21, 1999

Abstract

We present several e�cient dynamic data structures for point-enclosure

queries involving convex fat objects in R

2

or R

3

. These structures are

more e�cient than alternative known structures because they exploit

the fatness of the objects. We then apply these structures to obtain

e�cient solutions to three problems: (i) Finding a perfect matching

between a set of points and a set of convex fat objects. (ii) Finding a

piercing set for a collection of convex fat objects, whose size is within

a constant factor o� the optimum size. (iii) Constructing a data struc-

ture for answering bounded-length segment-shooting queries: Given a

set of fat objects in the plane as above, and a query oriented segment

�!

r , whose length is relatively short, �nd the �rst object hit by

�!

r .

1 Introduction

A convex object c in R

d

is �-fat, for some parameter � > 1, if there exists

an axis-parallel cube s

+

containing c and an axis-parallel cube s

�

that is

contained in c, such that the ratio between the edge lengths of s

+

and

s

�

is at most �. Practical instances of many geometric problems tend to

have fat objects as input. Fat objects have several desirable properties,

which were used by many authors to obtain more e�cient solutions to a

variety of algorithmic problems, when the underlying objects are fat. See

[3, 5, 7, 15, 16, 21, 23, 26, 27, 28] for a sample of these results.

In a recent paper [15], Katz has designed a data structure of nearly

linear size for certain kinds of queries involving a set of convex �-fat objects

in the plane. By augmenting the data structure in various ways he obtains

e�cient and simple solutions to several query-type problems, including the

point enclosure problem, where we wish to determine whether a query point

q lies in the union of the input set, and, if so, to report a witness object

�

A full version of this paper appears in http://www.math.tau.ac.il/~alone/dfat.ps.gz

1



www.manaraa.com

containing q, or, alternatively, report all k objects containing q. The cost of

such a query is O(polylog n) (or O(polylog n+k �polylog n)), as opposed to

roughly O(

p

n) (or O(

p

n+k)), which is the cost of a query when the fatness

assumption is dropped and only nearly linear storage is allowed [18, 19].

Although not noted in [15], this structure can be maintained dynamically,

using standard techniques, as will be described below.

In this paper we continue the work of [15]. We assume that our set C

of objects consists of convex �-fat objects, for some �xed small constant

� > 1, and we present compact dynamic data structures for C that enable

us to answer a point enclosure query e�ciently. The speci�c bounds depend

on the dimension (2D or 3D) and on the type of objects that are stored in

the data structure (e.g., convex �-fat polygons or polyhedra or convex �-fat

general objects). In general, these bounds are signi�cantly better than the

corresponding known bounds where fatness is not assumed. Consider for

example the case where the objects are (not necessarily axis-parallel) cubes

in R

3

. The standard storage/query tradeo� in this case lets s (the size of

the data structure) vary in the range n to n

3

, and the query cost, expressed

as a function of both n and s, is close to n=s

1=3

. Since cubes are fat objects,

we may use our data structure in this case. The e�ect of using our structure

is equivalent to a reduction by one in the dimension, in the sense that the

storage/query tradeo� that we obtain is roughly the same as for triangles

in the plane. That is, s varies in the range n to n

2

, and the query cost is

only about n=

p

s. Moreover, the structure can be maintained dynamically,

when inserting or deleting objects, at a cost of about s=n per update.

In Section 3 we present three applications of our data structures as stated

in the abstract.

2 Dynamic Data Structures for Fat Objects

In this section we present e�cient dynamic data structures for point-enclosure

queries involving a collection C of (possibly intersecting) convex fat objects

in R

2

or R

3

. Speci�cally, we want such a structure to support queries in

which we are given a point q and wish to determine whether q lies in the

union of the objects of C, and, if so, report an object containing q (or, al-

ternatively, report all objects containing q). We also want to maintain this

structure under insertions and deletions of objects into/from C. We present

several data structures for this problem, depending on the dimension and

on the type of objects in C.

2



www.manaraa.com

2.1 Fat polytopes in three dimensions

Let C be a set of n convex polytopes in R

3

. We assume that each polytope

is �-fat, for some �xed constant parameter � > 1, and has a constant

number of facets. We further assume that each facet of each polytope in C

is triangulated.

We �rst use a straightforward extension to three dimensions of the planar

data structure of Katz [15], to obtain a 3-level tree T , so that given a query

point q, we can return, in O(log

3

n) time,O(log

3

n) disjoint canonical subsets

of C, so that any polytope of C containing q belongs to one of these subsets,

and so that each canonical subset has a nonempty intersection.(The constant

of proportionality in these bounds depends on �.) This structure can be

maintained dynamically, using standard techniques, as follows: Using the

same ideas as in [6], we partition C into at most logn subsets, each containing

2

k

objects, for distinct integers k � logn. As shown in [6], if constructing

a static version of the data structure takes time T (n), then inserting an

object takes time O((T (n)=n) logn). Since in our case T (n) = O(n log

3

n),

the cost of an insertion is O(log

4

n). Deletion of an object C is done as

follows: We mark C as being deleted from each pre-stored subset containing

C in each of the three levels of T . When the actual number of objects in

such a subset becomes less than half its original cardinality, we reconstruct

all the substructures associated with this subset. In this manner we only pay

(in an amortized sense) an additional logarithmic factor for both insertions

and deletions, and it can be shown that this bound can also be obtained in

the worst case.

We augment T as follows. Let C

�

� C be a canonical subset, and let

p

�

be a (pre-computed) point common to all its elements (the construction

enables us to assume that p

�

does not lie on the boundary of any of the

elements of C

�

). Let Q

�

be an axis-parallel unit cube centered at p

�

. We

centrally project the boundary of each C 2 C

�

from p

�

onto @Q

�

, to obtain

a collection of O(n) polygons, each having O(1) edges, on @Q

�

. We process

each facet f of Q

�

for e�cient point enclosure queries (in the non-fat planar

setting). That is, we construct the data structure of Matou�sek [18], using

O(s) storage, where s varies between n and n

2

, so that for a given point

q 2 f , we can report the set of polygons on f that contain q as the disjoint

union of O(n

1+"

=

p

s) canonical subsets. The cost of a query is O(n

1+"

=

p

s),

and the structure can be maintained dynamically, when inserting or deleting

polygons, at a cost of O(s=n

1�"

) per update.

1

1

Throughout the paper, " stands for an arbitrarily small positive constant parameter.

3



www.manaraa.com

We next construct another layer of our data structure, as follows. For

each canonical set P of polygons stored in one of the point-enclosure sub-

structures, we replace each polygon � in P by the plane containing the

polytope facet that has been projected onto �, and store the (boundary of

the) intersection of the halfspaces bounded by these planes and not con-

taining p

�

. For this we use the data structure of Agarwal and Matou�sek [4,

Thm. 2.8], which maintains dynamically the upper envelope of these planes

(relative to the normal direction of the facet f). This structure enables us to

determine in O(logn) time whether a query point lies above all these planes.

Alternatively, it enables us to report in O(logn+k) time the k planes of this

structure lying above a query point. Moreover, a plane can be inserted or

deleted in time O(n

"

). This completes the description of our data structure.

Answering a query: Let q be a query point. We wish to determine

whether some polytope of C contains q and, if so, produce a witness polytope

that contains q (or, alternatively, report all such polytopes). We start by

querying the �rst layer of our structure, and obtain a collection of O(log

3

n)

canonical subsets, each augmented as above. For each subset C

�

, with a

common point p

�

, we compute the intersection q

0

of the ray emerging from

p

�

towards q with the boundary of the cube Q

�

, and query the corresponding

point-enclosure substructure with q

0

. The answer to this query consists of

O(n

1+"

=

p

s) disjoint canonical subsets of projected polytope facets, where

all members of such a subset contain q

0

. We �nally query each of the cor-

responding third-layer upper-envelope substructures with q. It is easy to

verify that q lies below the upper envelope of at least one such substructure

if and only if q lies in the union of the polytopes of C. If this is the case, we

can either report all polytopes containing q, by reporting all the planes that

lie above q in each of the corresponding substructures, or stop after report-

ing just one such plane. The overall cost of a query is thus O(n

1+"

=

p

s), or

O(n

1+"

=

p

s + k) in the reporting version, where k is the output size.

Updating the structure: Each of the three layers of our structure is

dynamic, and the updating of the whole structure is easy to do layer-by-

layer. We omit the straightforward details. The overall cost of an update

operation is O(s=n

1�"

). The results of this subsection are summarized in

Theorem 2.2 below.

2.2 General fat objects in three dimensions

Next consider the case where C is a collection of general convex �-fat objects

in R

3

. We assume here that each object in C has constant description com-

plexity, in the sense that its boundary is a semialgebraic set de�ned in terms

4



www.manaraa.com

of a constant number of polynomial equalities and inequalities of constant

maximum degree.

In this case we use the �rst layer of the data structure described in Sec-

tion 2.1. For each canonical set C

�

, with a common point p

�

, we represent

the boundary of each C 2 C

�

as a function r = f

C

(�; �) in spherical coordi-

nates about p

�

. With an appropriate standard re-parameterization (which

we will not detail here), the graphs of these functions are algebraic of con-

stant description complexity, in the above sense. We need to maintain the

upper envelope E

�

of these functions. Indeed, a query point q lies in the

union of C

�

if and only if r

q

� E

�

(�

q

; �

q

), where (r

q

; �

q

; �

q

) are the spherical

coordinates of q about p

�

.

The maintenance of this envelope can be accomplished using the `shallow-

levels' data structure of Agarwal et al. [2]. This structure has sizeO((n

�

)

2+"

)

and can be constructed in O((n

�

)

2+"

) time, where n

�

= jC

�

j. Using this

structure, we can determine whether r

q

� E

�

(�

q

; �

q

) in O(logn) time, or

report all k objects of C

�

that contain q in time O(logn + k). An insertion

or deletion of an object takes O(n

1+"

) time. It follows that the overall size

of the full data structure is also O(n

2+"

), that a query can be performed in

time O(log

4

n) (or O(log

4

n + k)), and that an update takes O(n

1+"

) time.

These bounds are summarized in Theorem 2.2 below.

In the case that C = fB

1

: : :B

n

g is a set of n (not necessarily congruent)

balls in R

3

, we use known techniques to obtain exactly the same bounds.

These bounds also appear in Theorem 2.2.

2.3 The planar case

In this subsection we consider the case where C is a collection of general

convex �-fat objects in the plane. As before, we assume that each object

in C has constant description complexity. In the full version of this paper,

we obtain the following result, which is a slight improvement over the data

structure of Katz [15]:

Theorem 2.1 We can store a (static) set C of n convex �-fat objects in the

plane, into a data structure of size O(n logn), using O(n log

2

n) preprocess-

ing time, such that one can determine in time O(log

2

n), whether a query

point is contained in some object of C.

A dynamic data structure Again, our goal is to preprocess C into a

dynamic data structure that can support insertions and deletions of objects,

and queries where we are given a point q and wish to determine whether

q lies in the union of C and, if so, to report an object of C containing

q, or, alternatively, report all such objects. We use the data structure T

of Theorem 2.1, so that given a query point q, we can obtain in O(logn)

5



www.manaraa.com

time a collection of O(logn) canonical subsets of C, such that each object

containing q appears in one of these subsets, and such that each subset C

�

has a point p

�

common to all its members. For each object c 2 C

�

, we can

represent @c as a continuous function r = f

c

(�) in polar coordinates about

p

�

, and each pair of these functions intersect at most a constant number s

of times. Then q is contained in an element of C

�

if and only if r

q

� E

�

(�

q

),

where E

�

is the upper envelope of these functions, and where (r

q

; �

q

) are

the polar coordinates of q about p

�

. We therefore need to maintain the

upper envelopes E

�

for the canonical sets, so that searches and updates of

them can be performed e�ciently. For this we can use (a simpli�ed version

of) the shallow-level data structure of Agarwal et al. [2] mentioned in the

preceding subsection. Recall that the complexity of E

�

is �

s

(n

�

), where

n

�

= jC

�

j and where �

s

(n) is the maximum length of (n; s) Davenport-

Schinzel sequences [25]. It follows from [2] that we can construct a data

structure of size O(n

1+"

), in time O(n

1+"

), using which we can answer a

query in O(logn) time (or in O(logn + k) time, for reporting all k objects

of C

�

containing q), and perform an insertion or a deletion in time O(n

"

).

Combining all these substructures, using the decomposition technique of

van Kreveld [17, Corollary 5.2 (ii)], into one overall structure, we obtain the

bounds appearing in Theorem 2.2 below.

The case of fat polygons: We can do somewhat better if the objects

in C are convex �-fat polygons in R

2

. Details are omitted due to lack of

space, and appear in the full version. The results we obtain are listed in

Theorem 2.2 below.

Theorem 2.2 Let C be a set of n convex �-fat objects in R

d

, each having

a constant description complexity, for some �xed constant � > 1 and for

d = 2; 3. For any parameter n � s � n

2

, we can preprocess C into a data

structure, such that �nding an object of C containing a query point (point-

enclosure query), and inserting or deleting an object into/from C can be done

in the time listed in the following table: In all cases below we can also report

all objects containing a query point in time O(Q(n) + k), where Q(n) is the

time for a point-enclosure query, and k is the number of reported objects.

6



www.manaraa.com

Objects: general polytopes balls general polygons

objects objects

Dimension: 3D 3D 3D 2D 2D

Preprocessing: O(n

2+"

) O(s

1+"

) O(s

1+"

) O(n

1+"

) O(n log

3

n)

Storage: O(n

2+"

) O(s) O(s) O(n

1+"

) O(n log

3

n)

point-enc. O(log

4

n) O(

n

1+"

p

s

) O(

n

1+"

p

s

) O(logn) O(log

3

n)

query:

Update: O(n

1+"

) O(s=n

1�"

) O(s=n

1�"

) O(n

"

) O(log

4

n)

3 Applications of the Data Structures

3.1 Matching points and fat objects

Let C be a set of n convex �-fat objects in R

2

or R

3

, and let P be a set of

n points. We want to solve the matching problem, which is to match each

point of P to a distinct object that contains it. Please see the full version

of this paper for motivation and a list of relevant results. We can solve the

matching problem by applying the matching algorithm of Efrat and Itai [11].

This algorithm maintains a dynamic data structure that stores a subset of

the objects of C, and supports queries where we specify a point p and wish

to �nd an object in the current subset that contains p, and then delete that

object from the structure. The algorithm performs O(n

3=2

) such operations,

and its running time is dominated by the cost of these operations.

We use the appropriate data structure from among those developed in

the preceding section, depending on the type of objects in C. In the three-

dimensional cases, we set the storage parameter s to be n

4=3

, so that both

queries and updates take O(n

1=3+"

) time each. We thus obtain:

Theorem 3.1 Let C be a set of n convex �-fat objects, each of a constant

description complexity, in R

d

(for d = 2; 3), and let P be a set of n points

in R

d

. Then we can either �nd a one-to-one matching between P and C,

such that each point p 2 P is contained in the object of C matched to p, or

determine that no such matching exists. The running time of the algorithm

is O(n

11=6+"

) for polytopes in R

3

and for balls in R

3

. The running time is

close to O(n

3=2

) for general objects and polygons in R

2

.

3.2 Piercing fat objects

Let C be a (static) set of n objects in R

d

. A set of points P in R

d

is a piercing

set for C if P intersects every object in C. Finding a minimal piercing set is

NP-complete for d � 2 [13], so it is natural to seek approximate solutions,

in which the size of the computed piercing set is not much larger than the

optimum size. The problem of �nding a minimal piercing set is a special

instance of the well known set cover problem, so we can apply the greedy

7



www.manaraa.com

algorithm for �nding a set cover [9] to obtain, in polynomial time, a piercing

set whose size is larger than the optimum size by a factor of (1+log l), where

l � n is the depth of the arrangement of C. Br�onnimann and Goodrich [8]

presented a polynomial-time algorithm for computing a set cover in which

the approximation factor depends both on the optimum cover size c and

on the VC-dimension of the underlying set system. If the VC-dimension is

some constant, then their algorithm �nds a cover of size O(c log c).

In this subsection we present e�cient approximate algorithms for the

case of fat objects in two or three dimensions. The algorithms produce

piercing sets whose size is within a constant factor o� the optimum size.

The high-level description of the algorithm is simple: For each object

C 2 C, let Q

C

denote the smallest axis-parallel cube enclosing C. We sort

the objects of C in increasing order of the size of Q

C

. The algorithmworks in

stages, where the i-th stage starts with the subset C

i

of C consisting of those

objects that have not yet been pierced (initially, C

1

= C). Let C

i

be the

smallest object (in the above order) in C

i

. Let bQ

C

i

be the cube Q

C

i

scaled

by some �xed factor b > 1 about its center (we can choose, e.g., b = 2). The

fatness of the objects of C and the fact that C

i

is the smallest object in C

i

imply that for any object C 2 C

i

that intersects C

i

, the measure of C\bQ

C

i

is at least some �xed fraction of the measure of bQ

C

i

. Hence, we can place

a constant number of points inside bQ

C

i

, (this number only depends on �

and d) so that any C 2 C

i

that intersects C

i

will contain one of these points.

We add these points to the output piercing set, and delete from C

i

all the

objects that are pierced by any of them. The subset C

i+1

of the remaining

objects is then passed to the next stage. The algorithm terminates when

this set becomes empty.

The termination of the algorithm, and the fact that its output is a pierc-

ing set are both obvious. Moreover, the objects C

1

; C

2

; : : : are pairwise

disjoint, so if the algorithm terminates after j stages, then the size of the

optimum piercing set is at least j, whereas the size of the output is O(j),

so the output size is indeed within a constant factor o� the optimum. To

implement the algorithm, we use the appropriate data structure developed

in the preceding section, to obtain the following result:

Theorem 3.2 Let C be a set of n convex �-fat objects in R

d

, for some �xed

constant � > 1 and for d = 2; 3. Then we can compute a piercing set for C of

size O(j), with the constant of proportionality depending on � and d, where

j, is the size of a minimal-cardinality piercing set for C. The running time

of the algorithm depends on d, and on the type of objects in C, as follows:

8



www.manaraa.com

Objects: polytopes balls general polygons

dimension 3D 3D 2D 2D

Running time O(n

4=3+"

) O(n

4=3+"

) O(n

1+"

) O(n log

4

n)

3.3 Segment shooting among fat objects

Let C be a set of n convex �-fat objects in the plane, and let � be the smallest

diameter of any object in C. In the bounded-size arc shooting problem, we

wish to preprocess C, so that, for a given oriented query arc ~r of length at

most h�, for some constant h, the �rst object of C hit by r (if such an object

exists) can be found e�ciently. More precisely, we search for an object c 2 C

for which there is a point z 2 ~r such that z 2 c and the initial portion of

~r preceding z does not intersect any object of C. An e�cient solution to

this problem is presented in [15] for the special case where C consists of

either (constant-complexity) polygons or disks, and the query arc is either

a segment or a circular arc. Here we present a solution for the general case,

assuming the query arcs are segments. The data structure we describe is

based on the data structure for point enclosure, its size is nearly linear in n,

and the query cost is polylogarithmic, as opposed to roughly O(

p

n) in the

non-fat setting (see [1]). Given an oriented query segment ~r =

�!

pq , we �rst

check whether its �rst endpoint p lies in one (or more) of the objects of C,

using the data structure of Theorem 2.1. Assuming it does not, we proceed

as follows. We obtain in O(log

2

n) time a collection of O(log

2

n) canonical

subsets of C, such that each object that is intersected by ~r appears in at least

one of these subsets, and such that each subset C

�

has a point p

�

common

to all its members. This is done by performing a point enclosure query for

each of the points in a point set of constant size that is constructed as a

function of ~r, in its vicinity; see [23, 24].

We now perform a segment shooting query in each of these subsets C

�

to obtain a collection of O(log

2

n) candidate objects from which we choose

the one that is hit �rst by ~r. We next show how to perform e�ciently a

segment shooting query in a subset C

�

with a common point.

Assume for simplicity of exposition that the common point of C

�

is the

origin O, and let U denote the union of the objects in C

�

. Let ` be the

oriented line containing ~r and oriented in the same direction. We will �nd

v, the intersection point of ` with U , that lies ahead of p and is closest to

p, if a such a point exists. By checking the relative position of p; q and v

along `, we discover whether v lies on ~r. We divide U into two regions,

U

u

, the region above the x-axis, and U

d

, the region below the x-axis. We

�nd the �rst intersection point between ` and each of them, and select the

9



www.manaraa.com

one that is closer to p. Let us focus on U

u

and let � = @U

u

. We consider

� as the graph of the upper envelope of the boundaries of the sets of C

�

,

expressed as functions in polar coordinations about O. If we assume that

each pair of the boundaries of the objects of C intersect in at most a constant

number s of points, then the number of vertices of � (i.e. intersection pairs

of boundaries that lie on �) is at most (�

s

jC

�

j). We construct a binary

tree T as follows. We compute the convex hull CH(�), using the optimal

algorithm of Nielsen and Yvinec [20]. Clearly, ` intersects U

u

if and only if

the straight line containing ` intersects CH(�). We associate root(T ) with

CH(�). Next, we �nd a vertex m 2 � which divides � into two parts �

1

and

�

2

having approximately the same number of vertices. Let the endpoints of

these parts be t

1

; m and m; t

2

. We add edges that connect these endpoints

to O, so that �

1

(resp. �

2

) together with these edges form the boundary of a

star-shaped region K

1

(resp. K

2

), that contains the origin O. We compute

CH(K

1

) and CH(K

2

), and associate the two children of root(T ) with CH(K

1

)

and CH(K

2

). We continue to construct T recursively, and stop when K

v

,

for a leaf v, consists of the boundary of a single object.

Answering a query. Assume none of the endpoints of ~r is in U . We

check whether ` intersects CH(�), the convex hull of U

u

. If it does not then

we deduce that ~r does not intersect U

u

. If it does, we move on to the two

children w

1

; w

2

of the root of T , storing the regions CH(K

1

) and CH(K

2

),

respectively. Clearly ` intersects at least one of these regions. If it intersects

only one of them, we continue recursively in the appropriate subtree. The

interesting case is when ` intersects both regions at two respective openly-

disjoint intervals I

1

and I

2

. suppose, with no loss of generality, that I

1

precedes I

2

along `. We distinguish between the following three cases:

(i) p precedes I

1

on `: In this case, we recurse only at w

1

,

(ii) p succeeds I

1

on `: In this case, we recurse only at w

2

. (If p also

succeeds I

2

, we can stop the recursion and conclude that ~r does not meet

U

u

.)

(iii) p 2 I

1

: In this case it is not clear whether the �rst hitting point of

r with U

u

occurs within K

1

or within K

2

, since it is possible that ~r emerges

from CH(K

1

) without hitting K

1

itself. (In the special case where q also lies

in I

1

, or precedes I

2

in `, we know that ~r does not hit K

2

, so we recurse

only at w

1

. To resolve this problem, let p

0

denote the endpoint of I

1

lying

ahead of p (between p and I

2

). If p

0

2 U then it su�ces to recurse only on

w

1

.Otherwise, we perform a new shooting query with ~r

0

=

~

p

0

p (we shoot in

the opposite direction, from p

0

towards p). However, we start the recursion

from the node w

1

of T . The important observation is that case (iii) will never

10



www.manaraa.com

arise in any successive step of the query, so the query will follow a simple

path in T from w to some leaf, or else it stops earlier with the conclusion

that ~r

0

does not hit U

u

. If we reach a leaf Z, we check in constant time

whether ~r

0

hits the single object associated with Z, to determine whether ~r

0

hits U

u

.

(iii.a) If ~r

0

does not hit U

u

, we recurse (with the original query) only at

w

2

. Note that case (iii) will not arise again, at any future recursive step.

(iii.b) If ~r

0

hits U

u

, we recurse only at w

1

. (Now it is possible for case

(iii) to arise again.)

If we have not terminated the query with the conclusion that ~r does not

hit U

u

, we will end at some leaf Z of T . As in case (iii) above, we �nd the

�rst hitting point of ~r with the single object o whose boundary is stored

at Z, and return this point (and o) as output. The cost of this process is

O(log

3

n); The cost of intersecting ` with any convex hull is O(logn); the

query follows a path of length O(logn) in T , and at each node of the path we

may need to execute a sub-query (if we are in case (iii)) that traces another

path of length O(logn). We repeat this process on U

d

, and apply it to each

of the O(log

2

n) canonical sets C

�

. Thus we have:

Theorem 3.3 Let C be a collection of convex �-fat objects in R

2

, each with

constant description complexity. We can preprocess C in time O(n

1+"

), into

a data structure of size O(n

1+"

), so that given an oriented segment ~r of

length � h�, where h is a constant and � is the smallest diameter of any

object in C, we can �nd the �rst object of C hit by ~r (if such an object exists)

in time O(log

5

n).

Dynamization and Generalization. In timeO(logn) we can easily add

objects to the data structure, while increasing the query time by O(logn),

using the standard technique of [6]. Concerning deletions, we suspect that

one can maintain in O(log

2

n) the convex hull of a set of convex objects,

provided they all share a point. We believe that this is possible using ex-

tensions of the ideas of [14]. However, we are not aware of any work on this

problem. The special case where the objects are fat polygons, can be han-

dled trivially using the technique of [22], so that each insertion or deletions

takes O(log

2

n), and the time for a query is the same.

References

[1] P. K. Agarwal, Ray shooting and other applications of spanning trees with low stab-

bing number, SIAM J. Comput. 21 (1992), 540{570.

[2] P.K. Agarwal, A. Efrat and M. Sharir, Vertical decomposition of shallow levels in

3-dimensional arrangements and its applications, Proc. 11th ACM Symp. Comput.

Geom., 1995, 39{50.

11



www.manaraa.com

[3] P.K. Agarwal, M.J. Katz and M. Sharir, Computing depth orders and related prob-

lems, Computational Geometry: Theory and Applications 5 (1995), 187{206.

[4] P.K. Agarwal and J. Matou�sek, Dynamic half-space range reporting and its applica-

tions, Algorithmica 14 (1995), 325{345.

[5] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. N�aher, S. Schirra and C. Uhrig,

Approximate motion planning and the complexity of the boundary of the union of

simple geometric �gures, Algorithmica 8 (1992), 391{406.

[6] J. Bentley and J. Saxe, Decomposable searching problems I: Static-to-dynamic trans-

formation, J. Algorithms 1 (1980), 301{358.

[7] M. de Berg, M. de Groot and M. Overmars, New Results on Binary Space Partitions

in the Plane, Proc. 4th Scandinavian Workshop on Algorithm Theory, 1994, 61{72.

[8] H. Br�onnimann and M.T. Goodrich, Almost optimal set covers in �nite VC-

Dimension, Discrete and Computational Geometry 14 (1995), 263{279.

[9] V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res., 4

(1979), 233{235.

[10] K. L. Clarkson, K. Mehlhorn, and R. Seidel, Four results on randomized incremental

constructions, Computational Geometry: Theory and Applications 3 (1993), 185{212.

[11] A. Efrat and A. Itai, Improvements on bottleneck matching and related problems,

using geometry, Proc. 12th ACM Symp. Comput. Geom., 1996, 301{310. See also:

A. Efrat, M.J. Katz and A. Itai, Improvements on bottleneck matching and related

problems, using geometry, in preparation.

[12] A. Efrat and M. Sharir, On the Complexity of the Union of Fat Objects in the Plane,

Proceedings 13 Annual Symposium on Computational Geometry, 1997, to appear.

[13] R.J. Fowler, M.S. Paterson, and S.L. Tanimoto, Optimal packing and covering in the

plane are NP-complete, Information Processing Letters 12 (3) (1981), 133{137.

[14] J. Hershberger and S. Suri, Applications of a semi-dynamic convex hull algorithm,

Proceedings 2 Scand. Workshop on Algorithms Theory, Lecture Notes in Computer

Science, 1990, vol. 447, Springer-Verlag, New York{Berlin{Heidelberg, 380{392.

[15] M.J. Katz, 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc

shooting amidst convex fat objects, tech. Report 2583, INRIA, BP93, 06902 Sophia-

Antipolis, France, 1995.

[16] M.J. Katz, M.H. Overmars, M. Sharir, E�cient hidden surface removal for objects

with small union size, Computational Geometry: Theory and Applications 2 (1992),

223{234.

[17] M. J. van Kreveld, New Results on Data Structures in Computational Geometry,

Ph.D. Dissertation, Dept. Comput. Sci., Utrecht Univ. , Utrecht, Netherlands, 1992.

[18] J. Matou�sek, E�cient partition trees, Discrete and Computational Geometry 8 (1992),

315{334.

[19] J. Matou�sek, Range searching with e�cient hierarchical cuttings, Discrete and Com-

putational Geometry 10 (1993), 157{182.

12



www.manaraa.com

[20] F. Nielsen and M. Yvinec, Output-Sensitive Convex Hull Algorithms of Planar Con-

vex Objects, Research Report 2575 INRIA, BP93, 06902 Sophia-Antipolis, France.

[21] M.H. Overmars, Point location in fat subdivisions, Information Processing Letters 44

(1992), 261{265.

[22] H. Overmars and J. van Leeuwen, Maintenance of con�gurations in the plane, J.

Comput. Syst. Sci. 23 (1981), 166{204.

[23] M.H. Overmars and A.F. van der Stappen, Range searching and point location among

fat objects, Proc. 2nd Annual European Symp. on Algorithms, 1994, 240{253. (See

also: Tech. Report UU-CS-1994-30, Dept. of Computer Science, Utrecht University.)

[24] O. Schwarzkopf and J. Vleugels, Range Searching in Low-Density Environments,

Tech. Report UU-CS-1996-26, Dept. of Computer Science, Utrecht University.

[25] M. Sharir and P.K. Agarwal, Davenport Schinzel Sequences and Their Geometric

Applications, Cambridge University Press, New York, 1995.

[26] A.F. van der Stappen, Motion Planning amidst Fat Obstacles, Ph.D. thesis, Utrecht

University, 1994.

[27] A.F. van der Stappen, D. Halperin and M.H. Overmars, The complexity of the free

space for a robot moving amidst fat obstacles, Computational Geometry: Theory and

Applications 3 (1993), 353{373.

[28] A.F. van der Stappen and M.H. Overmars, Motion planning amidst fat obstacles,

Proc. 10th ACM Symp. Comput. Geom., 1994, 31{40.

13


